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ABSTRACT

H.. optimal control theory, based on singular value loop shaping, is used to

synthesize a controller for the statically unstable longitudinal dynamics of X-29

aircraft. Two design cases are studied: 2-input 2-output; and 3-input 3-output cases.

H.. theory provides a direct, effective procedure for synthesizing control laws satisfying

specified performance objectives and robustness specifications. The 2 1/0 case has

better performance, a faster response and is more robust, than the 3 I/O case.

Discussion and comparison of results are given.
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I. INTRODUCTION

The main task for control system designers is to synthesize a control law which

maintains system response and error signals to within prespecified tolerances while at

the same time ensure relatively high robustness. Some measures of system robustness

commonly used are stability margins, sensitivity and disturbance attenuation. Thus, a

robust system denotes a system with satisfied system performance, has large stability

margins, good disturbance rejection and low sensitivity to parameter variations.

For the single-input single-output (SISO) systems, some techniques, i.e., root-

locus method, Bode plot and Nyquist diagram, had been well developed to design and

estimate system performance and robustness. Some of these classical methods can be

generalized to multi-input multi-output (MIMO) systems, however, not all of them do.

For instance, from a Nyquist diagram, one can not get a satisfactory notion of

multivariable stability margins.

In the past decade, a lot of research on properties of multivariable feedback

system has been accomplished. Singular value Bode plots of return difference and

loop gain matrices have emerged as useful indicators of muitivariable robustness [Refs.

1, 2, 3]. Among the techniques that have been recently developed, H., frequency-

weighted LQG, and LQG loop transfer recovery optimal synthesis theories have made

singular value loop shaping a routine matter [Ref. 51. For a multivariable feedback

control system, singular value loop shaping involves the manipulation of system loop

gain over a specified frequency bandwidth to improve system perfoniance and

robustness.



H. theory provides a direct, reliable procedure for synthesizing a controller.

While the frequency-weighted LQG optimal synthesis theory (or "H2 theory") and LQG

loop transfer recovery theory lead to somewhat less direct but highly effective iterative

procedures for shaping singular value Bode plots to satisfy singular value loop shaping

specification [Ref. 5].

The aim of this thesis is to present a controller design procedure, bases on the

H.. theory, for a reduced order, linearized longitudinal dynamics model of the X-29

aircraft analog backup mode. Some review about the properties of singular value,

sensitivity reduction and return difference matrices will be given in Chapter II. In

Chapter III, H. theory and weighting matrix are introduced. Application of H. theory

to X-29 longitudinal dynamics model is made in Chapter IV. The design result is

discussed in Chapter V.
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H. FEEDBACK PROPERTIES

For a control system, some properties such as impulse response matrix, transfer

function matrix and other characterizations of the response to commands can be

changed by prefiltering the command signal, rather than using feedback loop. But

some properties, usually termed feedback properties, like stability, sensitivity and

disturbance attenuation can be altered only through the feedback [Ref. 2]. Here, we

focus on these feedback properties which also define the robustness of system.

A. RETURN DIFFERENCE MATRIX

Consider the standard linear time-invariant multivariable feedback control system

in Fig. 2.1. It consists of the interconnected plant (G), controller (F) and sensor (H)

forced by commands (r), measurement noise (n), and plant disturbance (d). The

prefilter (P) is an optional element used to achieve deliberate command shaping.

From this configuration, we get

plant

y(s) = G(s)u(s) + d(s) (2.1)

controller

u(s) = P(s)r(s) - F(s)z(s) (2.2)

sensor

z(s) = H(s)(y(s) + n(-n (2.3)

where y(s), d(s), n(s), u(s), z(s), r(s) are vectors. and G(s). F(s,) H(s) are matrices.

For the feedback loop, define the transfer mtrix

M(s) - F(s)H(s)



d

-+ I

.*-n

F *qH :

Figure 2.1 Standard Feedback Control System

and matrices

L2(s) G(s)M(s)

L1(s) M(s)G(s)

are called return ratio matrices [Ref. 2, at the y(s) node and the u(s) node,

respectively.

And

I + L2(s)

I + L,(s)

are return difference matrices at y(s) node and us node. Similarly. the y(s) node and

u(s) node inverse return difference matrices are defined, respectively, as

4



I + L2_'

I + L1
"

Those terms introduced above are fundamental and important in the control system

synthesis. Because for a SISO system, the phase and gain margins can be determined

by the behavior of return difference as a function of frequency. And it turns out, as

we will see later, the return difference matrix also provides a means of measuring

robustness in a multivariable system.

B. SINGULAR VALUES AND MATRIX NORM

In the design of a feedback loop, one needs to determine the "size" of matrix

to estimate its properties. For a vector X(x,, x2, x3,...,x,), the size can be defined as

the Euclidean norm

IIX X=4x22+x,  X32 + ....... +

For a matrix, a more general concept is needed. One way to describe the size of

matrix A is based on the largest singular value of A, as

U(A) = max( II AX 11I/ 1x II )

where II * I denotes Euclidean norms. The singular values o1 of a rank n matrix AE

C" are defined as the non-negative square roots of the eigenvalues of A'A, where A*

is the transpose of the comp. x conjugate of A. It is convenient to order them as

follow

If rank r < n, then there are n - r zeros singular values, that is

0,.1 = (,2 = = = 0

5



One uses singular values rather then eigenvalues to describe matrix size since

eigenvalues can be a very poor indicators of the "size" of matrix [Refs. 5, 141. The

singular value is also a good measure of the near-singularity of a matrix, i.e., how

near the determinant of a matrix comes to being zero. The condition number, the ratio

of the largest to the smallest singular value, provides information about sensitivity to

perturbation, which also is an important indicator of robustness. Listed as follows are

some useful properties of singular value :

(1) i(A) = max (11 AX I/ I X II)

(2) q(A) = min (11 AX II / II X II) (the least singular value of A)

(3) q(A) I (A) i < i(A) , where k denotes the i-th eigenvalue of A

(4) If A- exists, q(A) = 1 / d(A')

(5) If A' exists, d(A) = 1 / O(A')

(6) &(AB) < a(A) d(B)

(7) 0i 2' = Trace (A'A) [Ref. 51

In SISO system, it is customary to define sensitivity in terms of percentage

variation in system output resulting from a given percentage change in the plant with

the input held fixed. A similar way is used to develop the sensitivity function for a

MIMO system.

C. SENSITIVITY FUNCTION AND DISTURBANCE ATTENUATION

Consider a finite dimensional linear time invariant (FDLTI) system in Fig. 2.2,

where r, d, and n are command, disturbance, and measure noise respectively. If it is

asymptotically stable, then we have input-output loop error and sensitivity relation as

follows

6
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F

Figure 2.2 Finite Dimentional Linear time Invariant System

input-output

y = GF(I + GF)(r - n) + (I + GF)"d (2.4)

loop error

e=r-y

= (I + GF)-'(r - d) + GF(I + GF)'n (2.5)

system sensitivity

AHcL = (1 + G'F)-'AHo (2.6)

where AH, and AH, represent the changes in the close-loop system and nominal

open loop system caused by changes AG in the plant G. i.e.. G' = G + AG [Ref. 1].

Here, we define

S(s) = (I + L(s))' = e/r (2.7)

7



R(s) a F(s)(I + L(s))" = u/r (2.8)

T(s) s L(s)(I + L(s)) t = I - S(s) = y/r (2.9)

where L(s) = G(s)F(s) is the loop transfer function, S(s) is known as the sensitivity

function matrix, T(s) is complementary sensitivity function. It can be seen that loop

transfer function L(s) determines the other three matrices. And, as will be seen, the

singular value bode plots of these matrices play important role in the design of

multivariable robust control system.

From Eq. (2.5), it is seen that the loop error " e " resulting from disturbance

inputs can be made small by making the sensitivity matrix, or inverse of the return

difference matrix (I + GF)"', small. From Eq. (2.6) the system sensitivity to plant

variations may be also reduced by decreasing the sensitivity function. One can

decrease the size of the sensitivity function by making

F(S(jo)) = a[(I + L(o))"]

small, or (from singular value properties (5))

g(I + L(jo)) (2.10)

large.

Note also

_(I + L(jo)) - _(L(jo)) for g(Ljw)) * 1

This tells us that large loop gains or " tight " loops yield good performance. But one

can not make loop gains arbitrarily high over arbitrarily large frequency. Since we can

see, from Eq. (2.5), large q(L(jo)) over a large frequency range not only make errors

due to r and d small, but make error due to n large. Large gains can also lead to

8



instability. There are certain performance tradeoffs between command / disturbance

error reduction and sensor noise error reduction ana stability to be satisfied.

D. STABILITY AND STABILITY MARGIN

In SISO system, gain margin and phase margin are the stability margins that are

commonly used. Both are conveniently expressed in terms of the magnitude of the

return difference, I + L(jo). In MIMO system, the return difference retains its

importance, but the concept of gain margin and phase margin become problematic.

The stability of the system in Fig. 2.2 is directly related to the matrices S(s),

R(s) and T(s). To find the stability margin for the system is to determine a lower

bound on the " size " of smallest perturbation to the plant that will destabilize the

system. And the singular value Bode plot of S(s) and T(s) can be used as the measure

of stability margins.

9



I. H. CONTROL DESIGN

H_. control theory provides a direct, reliable procedure for synthesizing a feedback

controller designed to meet singular value loop shaping requirements. Its capability

includes addressing the full range of stability margins, sensitivity, and robustness

optimization and response-shaping problems that can be formulated within the singular

value Bode plot framework. The standard configuration of an H. problem is shown

in Fig. 3.1. The design objective is to find a stabilizing controller F(s) for the

augmented plant P(s) while keeping the robustness specifications satisfied.

U, ~ P(S ),
U 2  Y2

F(s) I

Figure 3.1 Standard H. Small Gain Problem

10



The purpose of this chapter is to present a brief overview of H. optimal theory

and a control system design procedure based on this theory.

A. CONTROL SYSTEM FORMULATION

As shown by Eq. (2.5), (2.6), and (2.10), the loop error due to disturbance and

system sensitivity to plant variations can be reduced by suppressing the sensitivity

function S(s). (There is also some stability requirements desired in the robust system

synthesizing.) These goals can be achieved by properly selecting the weighting

functions in the design procedure.

Shown in Fig. 3.2, is the compensation configuration of system in Fig. 2.2, where

P(s) is the augmented plant with weighting functions W,, W2 and W, which penalizing

the error signal, control signal and output signal respectively.

Augmented Plant P(s)

i > • Yla

i - i Ylb

+ U y

U2

L Y2

Figure 3.2 Compensated System with Augmented Plant P(s)

11



From this Figure, we get

Y,. W, -WG u,

Ylb 0 W2 u2

Y2 Y1, 0 WG

Y2 I -G

Where the augmented plant with weighting functions is denoted as

W, -WG

0 W2
P(s) =

0 WG

I -G

A state space realization of P(s) is given by

A B, B2

P(s) = C1  DI D2 (3.1)

C2  D21 D,2

AG 0 0 0 0 BO

-BwCo A, 0 0 Bn -BwDo

0 0 Aw 0 0 Bw2

SB 3Co 0 0 Aw3 0 BwDo (3.2)

-DwICo Cw1  0 0 Dw, -DnDo

0 0 CW2  0 0 Dw.

D,,C 0 0 C., 0 DW3DG

-CO 0 0 0 I -Do

12



If the weighting transfer function is improper (i.e., has more zeros than poles), as can

be the case for W3, then no state space realization exists. The produce WG is in

this case still proper and can be represented by a state space realization. Some

calculations are need to compute the state space realization of the augmented plant.

From Fig. 3.1 one can define the transfer function T,1 .1 as

y, = T#=tuI *

This transfer function can be expressed in terms of the weighting matrix and previous

defined loop matrices, i.e.,
Y1. WIS

YIb = WR u

YlJ W3T

And the close loop transfer function from input u, to output y, is denoted aswIs

WT j

Where S, R, and T are loop matrices defined in Eqs. (2.7), (2.8),(2.9).

The compensated system is said to be internally stable if the augmented A matrix

of the compensated system is stable, i.e., when external input signal u, equals to zero,

the states of both P(s) and F(s) will go asymptotically to zero for any initial

conditions. And the controller is said to be stabilizing.

13



B. H. OPTIMAL CONTROL PROBLEM

The H. optimal control problem is defined as the following small gain

problem:

For the given transfer function matrix P(s), find a stabilizing controller F(s)

such that the close loop transfer function matrix T,,. 1 is internally stable and its

infinity-norm is less than or equal to 1, i.e.,

IIT,1  I < 1. (3.9)

Where the H. - norm of matrix A is defined as

II A 11=- sup i(A(jow)). (sup : the least upper bound)

This problem is called a " small gain problem " because the closed loop gain is small

(i.e., less than or equal to one). As mentioned before, the largest singular values of

S(s) determine the plant disturbance attenuation, since S(s) is the same as the close

loop transfer function from disturbance d to plant output y (Fig. 2.2). One may

specify the system disturbance attenuation performance with the frequency-dependent

weighting function W1 , that is

a(S(jo)) I W1'(jo) I

Now, consider the system in Fig. 3.4, where AA(s) and AM represent the additive

plant perturbations and the multiplicative plant perturbations respectively. Defining the

" size " of AA(jo) and AM(o) as a(A,(joV and 7 \,,,jon . the stability theorems are

obtained as follows:

14



PERTURBED PLANT

+'
F IE

Figure 3.3 Additive / Multiplicative uncertainty

Robustness Theorem 1:

If the system in Fig. 3.3 is stable as both A, and AM are zero. Let A, =

0, the size of the smallest stable AM(s) for which the system become unstable

is
1

(A(jco)) =

Where T(jco) is the complementary sensitivity function of the system. It is seen that

decreasing the value of a(T(jo)) will increase the size of A(jo), that is, increase the

stability margin.

Robustness Theorem 2

15



Suppose the system in Fig. 3.3 is stable when AA and AM are both zero. Let

AM = 0. Then the size of the smallest stable AA(s) which destabilizes the

system is

1
(AA(jto) ) =

,(R(jo)) [Ref. 5]

We can see that the smaller a(R(jco)) is, the greater will be the stability margin.

With properly selected weighting function matrices W2(jo)) and W3(jo), the

stability margins of the control system can be specified by the following singular value

inequalities,

((R(jco)) . I W2"(jo) I

((T(jo)) I W; 1(jo) I

Together with the performance specification W(jo), the design specifications of the

robust control system may be written as

&(S(jo)) -< W1"(joi) I (3.3)

(R(jo)) I W2 '(jo) I (3.4)

6(T(jo)) < I W 3 '(j~o) I. (3.5)

Thus, for a robust control system synthesis, the requirements may be presented as

reducing the plant disturbance effect as much as possible while meeting the control

inputs and the robustness constraints. This goal can be achieved by the singular value

loop shaping iterative procedure that will be introduced in the following sections.

As a consequence of singular value properties and the definition of H- norm,

these singular value inequalities can be combitied itnto the single infinity norm

specification in terms of the close loop transfer function T,, of the form

16



IITy u, IL. 1

where

WS

TY, 1 W2R

LWjT

Note, the matrix Ty11 is partitioned into submatrices representing performance

requirements and stability constraints.

C. WEIGHTING MATRIX SELECTION

Since the plant disturbance can be attenuated by reducing the value of F(s(jw))

continuously, a constant scaler weighting gain y is added to W , to facilitate the

singular value looping shaping process. That is

,(S(jco)) I '1, * W11(j0) I

So, as we increase the value of y, the sensitivity function is suppressed down

continuously. On the other hand, from Eq. (2.9) (T(s) + S(s) = I), we know that T(s)

goes to I as y increases (since S(s) goes to zero). This means the complementary

sensitivity is forced against its upper constraint W,'(s) as the value of y increases.

The closed loop bandwidth, therefore, is widened. This improves the system

performance, i.e., make system response faster. At the same time, the singular values

of closed loop transfer function T7, is pushed up to upper limit. The singular value

loop shaping process stops as the condition in eq. (3.9) is reached.

It is interesting to note that,

S(s) = (I + L(s))" = L(s)"

as g(L(jw)) ,, 1, ( i.e., the system has large loop gains)

17



i.e.,

1 / a(S(jco)) oLjo)

Similarly, as a(L(jco)) < 1,

T(s) = L(I + L(s))-' = L(s)

that is,

d(T(jow)) - (Lj))

These can be seen in Fig. 3.4, i.e., above the zero dB line, g(L(jo)) >> 1, 1 / F(S(jo))

- (L(jo)), while below the zero dB line, 6(L(jw)) (< 1, C(T(jco)) - 6L(jco)). Thus

the robust system design consists of the use of high loop gains at low frequencies

where the performance specifications are -.fined and the use of low loop gains at high

frequencies where the robustnesq constraints lie [Refs. 5, 13]. The system performance

will be limited within the range between a(G(s)F(s)) curve and o(G(s)F(s)) curve.

The weightings W, and W, are selected as transfer function matrices of which

diagonal elements are frequency-dependent constants. And the size of these weighting

matrices is the same as the number of plant output states. This small gain problem

is solved by using a software program, i.e., " hinf.m " provided by MATLAB

ROBUST-CONTROL TOOLBOX package. The number of states of the stabilizing

controller F(s) produced by " hinf.m " is the same as that of P(s). In addition it is

rmquired by " hinf " that the D1 submatrix of P(s) (see Eq. (3.1)) is full column rank.

An easy way to ensure that this is the case is to choose the weighting matrix W2 with

a invertible " D-matrix ", e.g., W,(s) = £1, where F is any non-zero number [Ref. 5].

The parameters considered in selecting these weightings are gain, order, attenuation

and corner frequency, which are used to achieve small j(S(s)), i.e., large loop gains,
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Figure 3.4 Singular Value Spec's on S(s) and T(s)

over the broadest possible bandwidth subject to the robustness constraints. And it

should be noted that the controller F(s) depends on the weighting matrices selected.

Once the weightings are selected, the control system design is in a computer-aided

design environment and requires only " one parameter " y-iteration. The flow chart

of the H. iterative procedure is shown in Fig. 3.5.
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IV. H.. CONTROLLER SYNTHESIS FOR X-29 FIGHTER

The purpose of this Chapter is to present a modem aircraft controller design

procedure based on the H.. optimal control theory. The model used is the longitudinal

dynamic model of X-29 fighter. The X-29 is a single seat forward swept wing (FSW)

demonstrator aircraft build by Grumman Co., which is designed to be a new generation

of tactical fighter with the advantages of light weight, low cost and high efficiency.

The computer-aided design program, MATLAB-ROBUST CONTROL TOOL BOX, is

used in controller synthesis. The brief plant description and design objective are given

in the following sections. The design procedure and results are also presented. The

script files specifically written or modified for this problem are listed in appendix A.

A. PLANT DESCRIPTION

The aerodynamic advantages of forward swept wing design include improved

maneuverability, with virtually spin-proof characteristics, better low-speed handling and

reduced stalling speed. The FSW X-29 (see Fig. 4.1) was selected primarily because

its multiple, independently controlled surface make it an ideal candidate for multiloop

synthesis of advanced control mode.

The aicraft is designed to have a -35% stability margin at subsonic speed. A

wing strake extends aft from the trailing-edge at each wing root, each strake with a

trailing-edge flap which has its own integrated servo actuator to augment foreplanes

for pitch control. All-moving canard surfaces. one on each side of the center fuselage,

outboard of engine inlet ducts and operated by servo actuators for primary pitch
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Figure 4.1 FSW X-29 Fighter

control. In addition the aircraft is equipped with flaperons [Ref. 10].

The X-29 longitudinal dynamic model considered in this study is an analog

reversion mode with the aircraft trimmed at 0.5 mark, 30,000 feet. The design point

was one of the critical nodes in the analysis of the aircraft. The 14-state reduced-

order model includes a short period approximation of the aircraft longitudinal dynamics,

vertical velocity w and pitch rate q, and 3 fourth order actuator dynamics for the

longitudinal control surfaces respectively, i.e., the canards, flaperons and strakes.

For the first design, a 2-input, 2-output configuration is used. Two separated

commands r, and r2 are input to the three control surface actuators with r, controlling

the canards and strakes and r. controlling the flaps. The outputs of the system are two

22



aircraft states, w and q. The physical configuration of this 2-input, 2-output open loop

actuator/aircraft dynamics model is shown in Fig. 4.2.

The second design example considered is a 3-input, 3-output controller synthesis.

Three separated commands r,, r2 and r, are input to the three control surfaces canards,

flaps and strakes respectively. The output to be controlled are w, q and the canard

control input 8,. The physical configuration for this model is shown in Fig. 4.3.

Comparison is made between this two proceeding designs.

The state variables are listed in Table 4.1. The state space realization of the

open loop plant model G is listed in Appendix B. The poles of this system are listed

in Table 4.2. It is seen that there is a positive pole, i.e., 1.9550, on the real axis.

That means the X-29 has an unstable short period mode.

The 14-state model was scaled to improve the numerical conditioning of its state

space representation. The w state was transformed to angle of attack (x using the initial

forward velocity ue, i.e., a = w / u.. The units of the actuator third derivative states

were transformed from rad/sec3 to le+04 rad/sec3. This scaling was effective in

reducing the condition number of the system state matrix A. from an order of

magnitude of 1010 to 10' [Ref. 13].

The singular value plot of the uncompensated plant G(s) is presented in Fig. 4.4.

The solid curve and dashed curve represent the maximum and minimum singular values

of G(s) respectively. As can be seen, at low frequency, the open loop plant has poor

disturbance attenuation, high sensitivity to plant variations and modeling errors, and a

small control bandwidth. These properties will ht" imprm-ed by singular value loop

shaping procedure presented in the following sections.
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Figure 4.3 X-29 3 1/0 Open Loop Configuration
Source :"W. L. Rogers [Ref. 13]
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Table 4.1 Discription of The Uncompensated X-29 state variables

State Description Units

a angle-of-attack rad

q pitch rate rad/sec

6C  canard control input rad

6t flap control input rad

6S  strake control input rad

C canard control rate rad/sec

6f flap control rate rad/sec

s strake control rate rad/sec

6c canard control accel. rad/sec2

6 flap control accel. rad/sec2

strake control accel. rad/sec2

canard control jerk le+04 rad/sec
3

flap control jerk le+04 rad/sec3

strake control jerk le+04 rad/sec3

Source W. L. Rogers [Ref. 13]
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Table 4.2 Uncompensated X-29 open loop poles

poleg =

-2.2746e+02 + 2.3201e+02i
-2.2746e+02 -2.3201e+02i

-1. 4455e+02
-1. 4491e+02
1. 9550e+00

-1. 0031le+02
-2. 7155e+00
-5.2518e+O1 + 4.8255e+Oli
-5.2518e+O1 - 4.8255e+Oli
-5.2506e+Q1 + 4.8410e+Oli
-5.2506e+01. - 4.8410e+0.i
-5. 0067e+O1
-2. 0172e+O1
-2. 0115e+O1

X-29 SV PLOT OF PLANT G
0

-20

S-60

-100-

-120-

- 140'
10-3 10C-2 10-1 100 101 102 103

MRQUENCY - rad/sec

Figure 4.4 Singular Value Plot of The Uncompensated Plant G(s)
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B. DESIGN SPECIFICATIONS AND WEIGHTING FUNCTIONS

Since the design objective is to attenuate the disturbance effect as much as

possible within loop gain constraint and robustness specifications. The design

specifications, in this case, are

Performance Spec.:

Minimize the sensitivity function as much as possible.

Robustness Spec.:

1). AttenuAte the close-loop singular values of the complementary

sr i .ity matrix by 20 db at frequencies beyond (o = 100 rad/sec

(15.9 Hz) (This will ensure that the system will have sufficient stability

margin to tolerate variations the loop transfer function of magnitude as

large as a factor of ten at frequency (o = 100 rad/sec).

2). a second-order roll-off beyond to = 100 rad/sec (This ensures the

controller is proper and matches the uncontrolled drop-off).

With these considerations, we have covered the most important issue in feedback

control system design. Once the design specifications are decided, the selection of

weighting matrices is the next step. For the 2-input 2-output system, the weighting

matrices are chose as follows :

.01 ( 1 + s / .01 )
(yW,(s))' = y * * I (4.1)

( I + s/ 100) (2x 2)

W2(s) = -0.025 * 1. (4.2)
(4 x 4)
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W" (s) -1000 (4.3)

to penalize the error "e ", control input " u " and output " y " respectively.

The singular value plot of W,-'(s), W;3 (s) weighting functions is given in Fig.

4.5. The robustness specification W, (s) has 20 dB drop-off and 40 diB roll-off at

co = 100 rad/sec which satisfied the design requirements. As mentioned, W1
1(s) and

W 3
1
'(S) should be so chose to ensure the 0 dB crossover frequency of W, is sufficiently

lower than the 0 dB crossover frequency of W,"(s). W,(s) is selected to penalize the

X-29 Design Specifications
150

100 I/W3(s) __

50 -.. . . . . . .

0-'

-100
10-3 10-2 10-' 100 10' 102 103

Frequency - rad/sec

Figure 4.5 Singular Value Plot of Weighting Functions
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control input u, and the weighting factor 0.025 is chosen to confine the actuators'

response within their design limits. The selected W,(s) also ensures that the submatrix

D,, of P(s) has full column rank as required in the two Riccati equation solution to the

H_ problem. The H_ theory requires that D12(s) matrix is full column rank in order

for an optimal H_ controller to eliminate infinite energy inputs. If we decrease the

weighting factor, more energy will input to the system, in this case, the actuators'

response may exceed the limits [Ref. 13].

C. DESIGN PROCEDURE

Before starting the singular value loop shaping procedure, it is necessary to find

the balanced state space realization for the unaugmented plant for a better numerical

condition. This can be seen from the different condition numbers of state matrix A.

before and after balanced realization, which are 5.526e+04 and 2.5567e+02 respectively.

1. 2-INPUT, 2-OUTPUT DESIGN CASE

With the selected weighting matrices, the augmented plant P(s) of the

balanced plant is of order eighteenth, W,(s) and W2 each adding two states to the

system G(s). Since W 3(s) is not a proper transfer function Eq. (4.3) (i.e., it has more

zeros than poles), so it has no state space realization. But W 3(s)G(s) is proper and can

be realized in state space form.

With the computer-aided design program, y is chosen as I for the first try

of the iteration process. As continuously increasing the value of y. the singular value

of cost function T,1, 1 is pushed up to its upper lin.it gradually until no solution exists

for any larger y. After several iterations, y equals to 2.6. and the maxinum singular

values of T,,,, reached the all pass limit (i.e., 0 dB line). Fig. 4.6 is the singular value
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COST FUNCTION Tylul (Gamma = 2.6)

-2-

! -6 •

-8

-10

-12~
10-2 10-1 100 101 102 103 104

Frequency - rad/sec

Figure 4.6 Cost Function Ty,., for y = 2.6

plot of cost function Ty,.,, the solid line represents the maximum singular values and

dashed line represents the minimum singular values. Fig. 4.7 and 4.8 are the singular

value plots of complementary sensitivity and sensitivity, the dashed line and dotted line

again represent the maximum and minimum singular values respectively. The

complementary function is pushed flat against the specified limit W,', as the value

of gamma is increased, the closed loop bandwidth is widened (to 30 rad/sec) and the

response speed is increased. Similarly, the sensitivity function is pushed down against

its limit y'W," as y value increased. The singular value of I + G(s)F(s) loop gains

are increased to about 50 dB at low frequency for this design. which markedly

improves the X-29 performance properties. This large loop gains indicate good

disturbance attenuation and low sensitivity to plant variations over a control bandwidth
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COMP. SENSITIVITY r*UNCTION AND /U'3
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Figure 4.7 Complementary Sensitivity Function T(s) and W,-' for y' 2.6

SENSITVITY FUNCTION AND i/WI
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Frequency - rad/sec

Figure 4.8 Sensitivity Function S(s) and W,-' for y = 2.6
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of about 3 rad/sec and satisfy the stability requirements. Note, in Fig. 4.8, W,"(s) =

5(S(jo)) at low frequency. And there is about 40 dB drop-off from 0 = 10 rad/sec to

co = 0.1 rad/sec which is the range of interesting. The state space realization of the

18-state stabilizing controller F(s) is listed in Appendix C. Two uncontrollable states

are removed using PRO-MATLAB function " minreal.m ". A fast transient poles is

eliminated while retaining the most important characteristics of the closed loop system.

Thus, the final controller has 15 states. The poles of this reduced-order controller are

listed in Table 4.3.

Table 4.3 Poles of The Reduced-Order Controller

poleacpr =

-2. 1954e+02
-6.5170e+01 + 9.5444e+01i
-6.5170e+01 - 9.5444e+01i
-1. 4487e+02
-1. 3577e+02
-5.3024e+01 + 4.9271e+01i
-5.3024e+o1 - 4.9271e+01i
-4.1572e+01 + 3.1587e+01i
-4.1572e+01 - 3.1587e+01i
-1.3180e+o1 + 1.9602e+01i
-1.3180e+01 - 1.9602e+01i
-3.0118e+o1 + 1.8361e+01i
-3.0118e+01 - 1.8361e+01i
-1. O00OOe-02
-1. O000e-02
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F(s) G(s)

Figure 4.9 X-29 Feedback Configuration

Fig. 4.9 shows the closed loop system of compensated X-29, where F(s) is

the 15th order controller and G(s) is the 14th order X-29 plant. Since F(s) is placed

in series with plant G(s), the command vector r is composed of the reference

commands r, and r2 to controlled outputs a and q. So , the closed loop compensated

system has 2 inputs, 2 outputs and 29 states. The poles of this reduced-order closed

loop system are listed in Table 4.4. The singular value plot of output, inverse-return

difference matrix I + (G(s)F(s))"1 (also called the output, multiplicative return difference

matrix) for the compensated system is shown in Fig. 4.10. The minimum singular

value of this matrix, i.e., a.,JI + (G(jo)F(jo))"]. provides a measure of the aircraft's

gain and phase margins with respect to multiplicative modeling errors using the

universal gain and phase margin curve (Fig.4. 11) [Ref. 4].
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Table 4.4 Poles of The 2 1/0 Closed Loop System

-2.2739e+02 + 2.3194e+02i
-2.2739e+02 - 2.3194e+02i
-2. 1723e+02
-6.4876e+01 + 9.6310e+Oli
-6.4876e+01 - 9.6310e+Oli
-1. 3558e+02
-1. 4595e+02
-1.4469e+02 + 9.2844e-02i
-1-4469e+02 - 9.2844e-02i
-1. 1118e+02
-4.9782e+01 + 4.9587e+Oli
-4.9782e+01 - 4.9587e+Oli
-5.2188e+01 + 4.8038e+Oli
-5.2188e+01 - 4.8038e+Oli
-5.2464e+01 + 4.8363e+Olj
-5.2464e+01 - 4.8363e+Oli
-4.1968e+01 + 3.2086e+Oli
-4.3.968e+03. - 3.2086e+Oli
-4. 1045e+01
-2.7932e+01 + 1.3447e+Oli
-2.7932e+O1 - 1.3447e+Oli
-1.1994e+01 + 1.1959e+Oli
-1.1994e+01 - 1.1959e+Oli
-1. 9603e+00
-2. 6697e+00
-3. 8935e+00
-1. 012 3e+0i
-1. 6232e+01
-1. 9727e+O1

it is seen in Fig. 4.10 that a,,,JI + (G(s)F(s)Y1 I drops to about -3 dB at

frequencies between 0.3 rad/sec: and 20 rad/sec. Entering the vertical axis of the

universal curve at singular value of 0.71 (i.e., -3 dB). The gain and phase margins of

compensated X-29 near 0 dB crossover frequency are -11 dB to +5 dB and ±42 deg

respectively. This is more stable than the -8 dB to +-4 dB and ±35 deg gain and phase

margins for the typical design of a fighter aircraft.
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Figure 4. 10 Singular Value Plot of The Output Inverse-Return Difference
Matrix for 2 1/0 System
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Figure 4.11 Universal Gain and Phase Margin Curve
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Shown in Fig. 4.12 are the closed loop Bode plots of a and q respectively.

The solid curves are the response to r, and dashed curves are to r2. It is seen that, at

low frequency, a is "all pass" (i.e., has 0 dB gain) to input I but has very small

response (-50 dB) to input 2. Similarly, as seen that q is "all pass" to r2 but has small

response to r. This indicates the decoupling of a from q to r, and r. Note, the

system performance at high frequencies satisfy the robustness requirements for both

cases.

The time response of a and q to 1 deg/sec (0.01745 rad/sec) step input are

presented in Fig. 4.13 and 4.14. It is seen from Fig. 4.13 that the response of a is fast

while with rise time of 0.3 seconds and 0.1 second to r, and r. respectively. We also

can see that the decoupling of x and q to the two commands from both plots. If we

reduce the weighting function W,(s), more energy will be input to system, and that

energy increases the response speed and the decoupling will be more pronounced.

Referring to Fig. 4.15 and 4.16, the time response of control deflections 8,

8, and 5,. It is seen that the peak magnitudes are 0.013 rad, 0.006 rad, and 0.007 rad

for 8€, 8, and 8. respectively, which are well within the X-29's control surface

deflection limits listed below :

(1). canards (leading edge) : 30 deg up / 60 deg down,

(2). flaps (trailing edge) : 10 deg up / 25 deg down,

(3). strakes (trailing edge) : 30 deg up and down.

The peak control rates (see Fig. 4.17 and 4.18) are 0.0013 rad/sec, 0.0004 rad/sec. and

0.0008 rad/sec respectively, which are much smaller than the X-29 actuator minimum

design requirements of
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X-29 alpha RESPONSE TO 0.01745 rad /I sec STEP INPUT

0.01

0.005 - -

V 0 
- ----

0.05

------- inputI

0

-0.03
0 0.5 1 1.5 2 2.5 3 3.5 4

TIME - see

Figure 4.13 Step Response of cc for 2 1/0 System

RESPONSE OF q -TO 0.01745 rad /1 see STEP INPUT
0.01

0.005 ---

------- input 1

-- - -- -~ 0~-------- - ------

0

--------------- input 2

-0.01

-0.025

0 0.5 1 1.5 2 2.5 3 3.5 4

TIME - see

Figure 4.14 Step Response of q for 2 1/0 System
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X-29 DC FOR 0.01745 rad / I see STEP INPUT
0.01

S0.005-

CL0

c>-0.005
U

U 0.01

-0.015,

0 0.5 1 1.5 E 2  ec2.5 3.5 4

6X10-3 X-29 DF FOR 0.01745 red /I sec STEP INPUT

------- input I
- --- ---- --- -~ - -

2-

input 2

0

L) -2

6

0 0.5 1 1.5 2 2.5 3 3.5 4

TIME - see

Figure 4.15 Step Response of Canard Control Input 8, and Flap Control
Input 8,
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X10-3  X-29 DS FOR 0.01745 rad / I sec STEP INPUT

4 - - ---- ---- --

input 2

4 --- npt
S 2-

o~ ---------

z
u -2 - --

S-4-

-8

-8
0 0.5 1 1.5 2 2.5 3 3.5 4

TIME - sec

Figure 4.16 Step Response of Strake Control Input 5.

Xz103 X-29 DCDOT FOR 0.01745 red / I see STEP INPUT

1.5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

TBM - see

Figure 4.17 Step Response of Canard Control Rate 5
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x10-4 X-29 DFDOT FOR 0.01745 rad / I sec STEP INPUT
3

2.

-- -- input I

------ input 2

-2-

V
9x.

-

0 0.5 1 1.5 2 2.5 3 3.5 4

TIME - sec

x10 - 4  X- 29 DSDOT FOR 0.01745 tad / I sec STEP INPUT
6 -

----- input I

TE -4e

6

-8-

0 0.5 1 1.5 2 2.5 3 3.5 4

TIME - sec

Figure 4.18 Step Response of fand 8.
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(1). canards : 1.75 rad/sec

(2). flaps : 0.87 rad/sec

(3). strakes : 0.52 rad/sec.

The response is well within the actuator limits but one also has a very small step-

input.

2. 3-INPUT, 3-OUTPUT DESIGN CASE

The second design example we use is the same X-29 dynamic model as in

the previous example, but with different input and output vectors, i.e., r, r,, and r3 to

control canards, flaps and strakes separately and outputs are ax, q, and 8. (see Fig.

4.3). Thus, it is a 3-input, 3-output system with 14 states.

The same design specifications are used for this case, and the weighting

functions are chose as follows :

.01 (I + s / .01 )
(y W(s))"1 = Y* * I (4.4)

( 1 + s / 100) (3 x 3)

W2 (s) = -0.025 * I. (4.5)
(6 x 6)

1000
W 3.(s) = - * 1 (4.6)

s" 2 (3 x 3)

The augmented plant P(s) is an 20th order system with W(s) and W..s) each adding

three states to the plant G(s). Following the same iterative procedure as of the

previous example, the cost function reaches its all pass limit as y = 1.3 (see Fig. 4.19),
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COST FUNCTION Tylul (Gamma = 1.3)

0
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Frequency - rad/sec

Figure 4.19 Cost Function T,,., for y = 1.3

then the iterative process stops. The solid, dashed, and dotted curves in this plot

represent the maximum, medium, and minimum singular values of T,, respectively.

The controller F(s) produced has 20 states, that is the same as number of states of

P(s). Three states are removed using " minreal.m " function and one state is

eliminated by " obalreal.m " program. So, the final controller has 16 states, the

controller / plant series has 30 states in total (uncompensated plant G(s) has 14 states).

The poles of this reduced-order closed loop system are listed in Appendix E.

Comparing Fig. 4.20 with Fig. 4.7 and 4.8 shows that this 3 I/O system are not as

robust as the 2 1/0 model. The 3 I/O system has smaller disturbance attenuation.

larger sensitivity to plant variations and modeling errors, smaller control bandwidth and

closed loop bandwidth. Fig. 4.21 is the singular value plot of output, inverse-return
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X-29 sV PLOT ( + inv(GF))
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Figure 4.21 Output, Inverse Return Difference Matrix for 3 I/O System

difference matrix. It is seen that the a,,,[ I + ((G(s)F(s))' I (i.e., the dotted curve)

drops to approximately -6 dB between 0.2 rad/sec and 13 rad/sec. Enter the vertical

axis of the universal curve (Fig. 4.11) at singular value of 0.5 (i.e., -6 dB), the gain

and phase margins near 0 dB crossover frequency are -6 dB to +3 db and ± 28 deg

respectively. It indicates that the stability margins of the 3 I/O system, with respect

to multiplicative modeling errors, are less than the values desired of a fighter aircraft,

i.e., -8 dB to +4 dB, ±35 deg gain and phase margin respectively. Obviously, it is

also not as stable as the 2 I/0 system discussed before.

From Fig. 4.22, the Bode plots of (x and q to the 3 inputs, we also can see

that a is decoupled from q to r, and r-. And it is interesting to see that both a and

q have very little response to r. This also can be seen from Fig. 4.23, i.e., r, has
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Figure 4.22 Closed Loop Bode Plots of a and q for 3 110 System
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Response of Alpha t~o 0.01745 rad/sec Step Input
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Figure 4.23 Step Response of at and q for 3 1/0 System
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almost no effect on both ax and q. This indicates that there is not much difference

to system response between 2 inputs design or 3 inputs design.

Shown in Fig. 4.24 and 4.25, the peak values of control deflections 8,, 8f,

and 5. (i.e., 0.005 rad, 0.0017 rad, and 0.015 rad respectively) are all well within the

design limits listed before, and are also smaller than those of the 2 I/O system since

the loop gains are smaller. Similar results are obtained from the plots of control rates

(Fig. 4.26 and 4.27), i.e., all responses stay within their design limits.

Thus, we may conclude that the performance of this 3 I/O control system satisfies

the design specifications but is not better than those of 2 1/0 system designed

previously.
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x10 - 3  Response of DC to 0.01745 rad/sec Step Input
5

4.... TO r3

a-3 - - -- TO rl

3 --
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a -- ',--- -------
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:10-3  Response of DF to 0.01745 rad/sec Step Input
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-- s-to r3

0

0.5

0 -0. 1 1. 2 23
0.C

-1 i -
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Time - slec

Figure 4.24 Step Response of 5, and 5& for 3 I/O System
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Response of DS to 0.01745 rad/sec Step Input

0.02

0.015 -

0.01 to ri0.01
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" -.... to r3Y

-0.005
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Figure 4.25 Step Response of 8. for 3 1/0 System

x10-4  Response of DCDOT to 0.01745 rad/sec Step Input
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II i
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Time - see

Figure 4.26 Step Response of ,for 3 1/0 System
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X10-3 Response of MFOT to 0.01745 red/sec Step Input
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V. CONCLUSIONS AND RECOMMENDATIONS

Although the mathematic work behind the H_ theory is very complicated, the

implementation of this method is easy using a well developed computer-aided design

software. From the design procedure presented above, it is seen that H. method

provides a direct, systematic and effective way to synthesize controllers for the

statically unstable longitudinal dynamics of X-29 aircraft. The two-command control

design example demonstrates a fast response, large stability margins, good disturbance

attenuation and low sensitivity performance. While the 3-input control configuration

shows a somewhat less performance due to the smaller loop gains.

It is seen in both design cases that the two control outputs, angle-of-attack (x

and pitch rate q, are decoupled to the command inputs. This is an important feature

which is needed to effect the advanced control modes in which aircraft flight path and

pitch attitude are independently controlled. Since, as shown in the 3-input case, the

separated commanded strake has almost no influence on the control outputs, we may

conclude that a reasonable and effective controller can be based on the use of two-

command control in the X-29 control system .

In both designs, we found the peak values of control surface deflections for the

actuators and control rates are all much smaller than their design limits. The selected

W2 weighting matrix ensures this compatibility but at a severe penalty in performance.

Further reduced order modeling of the controller is posiIble ut was not

accomplished in this thesis.
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APPENDIX A

Matlab Script Files

diary hx29.dat
format short e
disp(' ')
disp(' This script file is designed to solve the Hinf optimal control ')
disp(' problem for the X-29. The 14tn order FDLTI model, in state ')
disp(' space form, is that of the X-29 aircraft and actuator dynamics.')
disp(' Two states are those of the aircraft dynamics, i.e., alpha ')
disp(' and q. The remaining 12 states are the dynamics of the ')
disp(' three, fourth order actuators, i.e., the canard, flaperon, and ')
disp(' strake actuators. The order of the unbalanced states is as ')
disp(' follows:')
disp(' ')
disp(' alpha, q, dc, df, ds, dcdot, dfdot, dsdot, dcdbldot,')
disp(' dfdbldot, dsdbldot, dctrpldot, dftrpldot, dstrpldot')
disp(' ')
disp(' Given the open loop transfer function G(s)=Cinv(Is-A)B+D, a ')
disp(' stabilizing controller F(s) will be found such that the Hinf norm')
disp(' of Tylul is less than or equal to one. ')
disp(' ')
disp(' ')
%pause
clc
disp(' X-29 aircraft and actuator state space representation')
disp(' ')
disp(' ')
ag=[-.4181d+00 .9960d+00 -.2269d-01 -.1213d+00 -.1948d-01 -.9493d-03 ...
.4427d-04 -.6712d-04 .1451d-05 -.2162d-04 -.3540d-05 0.0 0.0 0.0;

.5474d+01 -.3424d+00 .2585d+01 -.1386d+01 -.1058d+01 .3898d-02 ...
-.1164d-01 -.6397d-02 -.2509d-03 -.5362d-03 -.2912d-03 0.0 0.0 0.0;

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0e+04 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0e+04 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0e+04;
0.0 0.0 -.1479d+04 0.0 0.0 -. 1143d+03 0.0 0.0 -.2529d+01 0.0 ...

0.0 -. 2697d+03 0.0 0.0;
0.0 0.0 0.0 -.1491d+04 0.0 0.0 -.1149d+03 0.0 0.0 -.2536d+0l ...

0.0 0.0 -.2701d+03 0.0;
0.0 0.0 0.0 0.0 -.5302d+05 0.0 0.0 -.1816d+04 0.0 0.0 ..

-.1790d+02 0.0 0.0 -.6053d+03]

bg=[O.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
.1479d+04 0.0;
0.0 .1491d+04;
.5308d+05 0.0)
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cg=(1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0)

dg=zeros(2)
%pause
disp(' ')
disp(' Balanced realization of the X-29 state space representation')
disp(' ')
[agbl,bgbl,cgbl,g,t]=obalreal(ag,bg,cg)
ag=agbl; bg=bgbl; cg=cgbl;
%pause
w=logspace(-3,3,100);
svg=sigma(ag,bg,cg,dg,l,w); svg=20*loglO(svg);
semilogx(w, svg)
title('X-29 SV PLOT OF PLANT G')
xlabel('FREQUENCY - rad/sec')
ylabel('SV - dB')
grid
meta hx29gsv
disp(' ')
disp(' Calculate the poles and transmission zeros of the balanced open')
disp(' loop plant')
disp(' ')
poleg=eig(ag), tzerog=tzero(ag,bg,cg,dg)
disp(' ')
disp(' ')
disp(' Determine determine the condition number of ag')
disp(' ')
disp(' ')
condag=cond(ag), rcondag=rcond(ag)
disp(' ')
disp(' ')
%pause
disp( ')
disp( << Design Specifications >> ')
disp(' ')
disp(' 1). Robustness Spec. : -40 dB roll-off, -20 db @ 100 Rad/Sec.')
disp( Associated Weighting:')
disp('
disp( -1 1000 ')
disp(' W3(s) --- * I (fixd)')
disp(' 2 2x2')
disp(' s
disp( ')
disp(' ')
disp(' 2). Performance Spec.: minimizing the sensitivity function')
disp(' as much as possible.')
disp(' Associated Weighting:')
disp(' ')
disp('
disp(' -1 -1 .01(100s + 1)
disp(' Wl(s) = Gam * -)----------- )
disp(' 2x2')
disp(' (.ls + 1)
disp( ')
disp(' where "Gam" in this design is iteratively updated from 1')
w=logspace(-3,3,100);
k-l000; mn=[2 21; t.u-0;
nuw3i = (0.0 k]; dnw3i = [1.0 0 0);
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svw3i - bode(nuw3i,dnw3i,w); svw3i = 20*loglO(svw3i);
nuwli - [1.0 0.01); dnwli =[0.1 1.0);
svwli - bode(nuwli,dnwli,w); svwli = 20*loglO(svwli);
awz=-0.025*eye(2); bw2=zeros(2); CW2=Zeros(2); dw2=-0.025*eyeC2);
disp(' ')
disp(' 1)
disp(' (strike a key to see the plot of the weightings ... )'

%pause
semilogx(w,svwli,w, svw3i)
grid
title('X-29 Design Specifications')
xlabel('Frequency - rad/sec')
ylabel(l/Wl & 1/W3 - db')
text(.01,0,1/Wi(s)')
text(.5,100, '1/W3(s)')
meta hx29specs
%pause
c
disp(' << Problem Formulation '

disp(' ')
disp(' Form an augmented plant P(s) with these two weighting functions:')
disp(' ')
disp(' 1). Gam*Wl penalizing error signal "ell')
disp(' ')
disp(' 2). W3 penalizing plant output "yi"')

disp(' ')
disp(' and find a stabilizing controller F(s) such that the Hinf norm')
disp(' of TF Tylul is less than or equal to one, i.e.')
disp(' ')
disp(' ITylull < or =1,')

disp(' F(s) inf')
disp(' ')
disp(' where ')
disp(' 1'
disp(' Tylul = Gam*Wl*(I + GF) = Gain * W1 S )disp(' -1 W3 * (I -S) '
disp(' W3*GF*(I + GF) '
disp(' '
disp(' '
disp(' '
disp('1 (strike a key to continue ... )'

%pause
c
disp(' '
disp(' ')
disp(' << DESIGN PROCEDURE '

disp(' ')
disp('
disp(' ( Step 1). Do plant augmentation (run AUGMENT.M or *)

disp(' AUGX29.M)
disp('
disp(' ( Step 2). Balance the augmented plant for better
disp(' numerical condition if necessary
disp('
disp(' ( Step 3). Do Hinf synthesis with "Gamn" - 1 1

disp('
disp(' ( Step 4]. Redo the plant augmentation for a
disp(' higher "Gamn" and rerun HINF.M 1

disp('
disp(' '
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disp(' I)
disp(' (strike a key to continue ... )'

tpause
c
disp(' '
disp(' '
disp(' '
disp(' Assign the cost coefficients "Gamn" with Gam=l '
disp('
disp(' serving as the baseline design .... '

disp(' '
d isp (' - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
disp(' augment t Plant augmentation of the X-29 dynamics')
disp (' - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
disp(' '
disp(' '
haugx2 9
disp(' '
disp(' '
disp(' (strike a key to continue ... )')
%pause
c

disp(' '
disp(' '
tdisp(' Do state space balancing on the augmented plant if needed')
tdisp(' '
tdisp(' '
%[abal,bbal,cbal,g,t)-obalreal(A,(Bl B2),[C1;C2))
tA=abal, Bl-bbal(:,l:2), B2=bbal(z,3t4j, C1=cbal(1t4,:), C2=cbal(5:6,i)
disp(' '
disp(' '
disp(' The transmission zeros, poles and condition number of the augmented')
disp(' plant follow. In addition, determine if (A,Bl) & (A,B2) are '
disp(' stabilizable and if (Cl,A) & (C2,A) are detectable.')
disp(' I

disp(' '
tzeroaug=tzero(A,4Bl B2],[C1;C2],[Dll D12;D21 D22)), poleaugA=eig(A)
condaugA=cond (A), rcondaugA=rcond (A)
eps-eps
toldef=lO*max(size (A) )*norm(A, 1) *eps
tol-lOO*eps*normnC([A B1])
[Alc,Blc,Clc,t,kJ=ctrbf(A,B1,Cl,tol)
tol-lOO*eps*norm( (A B2])
fA2c,B2c,C2c,t,k)=ctrbf(AB2,C2,tol)
tol-lOO*eps*norm( (A;Cl])
(Alo,Blo,Clo,t,k]-obsvf(A,Bl,Cl,tol)
tol=lOO*epst norm( (A;C2])
[A2o,B2o,C2o,t~k]-obsvf(A,B2,C2,tol)
clear condag rcondag poleg tzerog svw3i svwli
clear condaugA rcondaugA
clear functions
tpause
disp(' '
disp(' '
disp(' - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

disp(' hinf t Running script file HINF.M for Hinf optimization')
disp('
aretype-' Schur'
hinf
disp(' 'I
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disp(' I)
dispC' (strike a key to continue ... )I)
clear functions
%pause
disp(' '
disp(' 0)
disp(' State space representation of the full order controller')
disp(' (acp, bcp, ccp, dcp) with its poles and condition number')
disp(' ')
acp~bcp, ccp~dcp
polec=eig (acp)
condacp=cond (acp)
disp(' ')
disp(' Minimal realization of the controller')
disp(' ')
toldef=1O*max(size(acp))*norm(acp,l)*eps
tol=l00*eps*normC [acp bcp;ccp dcp])
[acpm,bcpm,ccpm,dcpm]=ininreal(acp~bcp,ccp,dcp)
disp(' ')
disp(' Balanced realization & model reduction of the minimal controller')
disp(' ')
(acpbl,bcpbl,ccpbl,g,t]=obalreal(acpm,bcpn,ccpm)
elim=f 10)
(acpr,bcpr,ccpr,dcpr]=modred(acpbl,bcpbl,ccpbl,dcpn,elin)
disp(' ')
dispC' Poles, controllability, observability, and condition of the '
disp(' balanced, reduced order controller')
disp(' 1)
poleacpr=eig (acpr)
tol=l00*epbs*norm( (acpr bcpr)
(acpc, bcpc, ccpc, t ,k)=ctrbf (acpr, bcpr, ccpr ,tol)
tol-l00*eps*norn( (acpr;copr])
(acpo, bcpo, ccpo, t ,)=obsvf (acpr, bcpr, ccpr, tol)
condacpr=cond(acpr),, rcondacpr=rcond(acpr)
acp=acpr; bcp=bcpr; ccp=ccpr; dcp=dcpr;
disp(' ')
disp(' CLTF Tylul (adl, bcl, ccl, dcl) and its poles (reduced order)')
[acl,bcl,ccl,dcl]=lftf(sysp,diinp,acp,bcp,ccp,dcp)
polet=eig(acl)
%pause
disp(' ')
disp(' ')
hpltopmod % Praparing singular values for plotting
end
disp(' P)
disp(' 1)
disp (' (strike a key to continue ... )')
%pause
disp(' ')
disp(' ')
disp(' Open loop state space representation of controller/plant series')
disp(' ')
(algf,blgf,clgf,dlgf]-series(acp,bcp,ccp,dcp,ag,bg,cg,dg)
polol=eig(algf)
disp(' ')
disp(' '
disp(' (strike a key to continue ... )')
%pause
disp(' '
disp(' '
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diary h3x29.dat
format short e
disp(' h3x29.m')
disp(' ')
disp(' This script file is designed to solve the Hinf optimal control ')
disp(' problem for the X-29. The 14th order FDLTI model, in state ')
disp(' space form, is that of the X-29 aircraft and actuator dynamics.')
disp(' Two states are those of the aircraft dynamics, i.e., alpha ')
disp(' and q. The remaining 12 states are the dynamics of the ')
disp(' three, fourth order actuators, i.e., the canard, flaperon, and ')
disp(' strake actuators. The order of the unbalanced states is as ')
disp(' follows:')
disp(' ')
disp(' alpha, q, dc, df, ds, dcdot, dfdot, dsdot, dcdbldot,')
disp(' dfdbldot, dsdbldot, dctrpldot, dftrpldot, dstrpldot')
disp(' ')
disp(' Given the open loop transfer function G(s)=Cinv(Is-A)B+D, a ')
disp(' stabilizing controller F(s) will be found such that the Hinf norm')
disp(' of Tylul is less than or equal to one. ')
disp(' ')
disp(' ')
%pause
clc
disp(' X-29 aircraft and actuator state space representation')
disp(' ')
disp(' ')
ag=(-.4181d+00 .9960d+00 -.2269d-01 -.1213d+00 -.1948d-01 -.9493d-03 ...
.4427d-04 -.6712d-04 .1451d-05 -.2162d-04 -.3540d-05 0.0 0.0 0.0;

.5474d+01 -.3424d+00 .2585d+01 -.1386d+01 -.1058d+01 .3898d-02 ...
-.1164d-0l -.6397d-02 -.2509d-03 -.5362d-03 -.2912d-03 0.0 0.0 0.0;

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0e+04 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0e+04 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 l.Oe+04;
0.0 0.0 -.1479d+04 0.0 0.0 -.1143d+03 0.0 0.0 -. 2529d+01 0.0 ...

0.0 -.2697d+03 0.0 0.0;
0.0 0.0 0.0 -. 1491d+04 0.0 0.0 -.1149d+03 0.0 0.0 -.2536d+01 ...

0.0 0.0 -.2701d+03 0.0;
0.0 0.0 0.0 0.0 -.5302d+05 0.0 0.0 -.1816d+04 0.0 0.0 ...

-. 1790d+02 0.0 0.0 -. 6053d+03]

bg=o0.0 0.0 0.0;
0.0 0.0 0.0;
0.0 0.0 0.0;
0.0 0.0 0.0;
0.0 0.0 0.0;
0.0 0.0 0.0;
0.0 0.0 0.0;
0.0 0.0 0.0;
0.0 0.0 0.0;
0.0 0.0 0.0;
0.0 0.0 0.0;
.1479d+04 0.0 0.0;
0.0 .1491d+04 0.0;
0.0 0.0 .5308d+05];
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cg=[1.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]

dg=zeros(3,3);

%pause
disp(' ')
disp(' Balanced realization of the X-29 state space representation')
disp4' ')
[agbl,bgbl,cgblg,t]=obalreal(ag,bg,cg)
ag=agbl, bg=bgbl, cg=cgbl,
w=logspace(-3,3,100);
svg=sigrma(ag,bg,cgdg,l,w); svg=20*loglo(svg);
semilogx(w,svg)
title('X-29 SV PLOT OF PLANT G')
xlabel('FREQUENCY - rad/sec')
ylabel('SV - dB')
grid
%meta h3x29gsv
disp(' ')
disp(' Calculate the poles and transmission zeros of the balanced open')
disp(' loop plant')
disp(' ')
poleg=eig(ag), tzerog=tzero(ag,bg,cg,dg)
disp(' ')
disp(' ')
disp(' Determine determine the condition number of ag')
disp(' ')
disp(' ')
condag=cond(ag), rcondag=rcond(ag)
disp(' ')
disp(' ')
%pause
disp(' ')
disp(' << Design Specifications > ')
disp(' ')
disp(' 1). Robustness Spec. : -40 dB roll-off, -20 db @ 100 Rad/Sec.')
disp(' Associated Weighting:')
disp('
disp(' -1 1000 ')
disp(' W3(s) =----- I (fixd)')
disp(' 2 3x3')
disp(' s
disp(' ')
disp(' ')
disp(' 2). Performance Spec.: minimizing the sensitivity function')
disp ' as much as possible.')
disp(' Associated Weighting:')
disp(' ')
disp (
disp(' -1 -i .01(100s + 1) ')
disp(' Wl(s) = Cam * ----------- * I')

disp( ' -3')
disp( ' (.1s + 1)
disp(' ')
disp(' where "Gam" in this design is iteratively updated from 1')
w=logspace(-3,3,100);
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k=1000; mn=[3 3]; tau=0.0;
nuw3i = [0 0 k]; dnw3i = [1.0 0 0];
svw3i = bode(nuw3i,dnw3i,w); svw3i = 20*loglO(svw3i);
nuwli = [1.0 0.01); dnwli =[0.1 1.0);
svwli = bode(nuwli,dnwli,w); svwli = 20*loglO(svwli);
aw2=-0.025*eye(3); bw2=zeros(3); cw2=zeros(3) ; dw2=-0.025*eye(3);
disp(' ')
disp(' ')
disp(' (strike a key to see the plot of the weightings ...)')
%pause
semilogx(w,svwli,w,svw3i)
grid
title('X-29 Design Specifications')
xlabel('Frequency - rad/sec')
ylabel('i/Wl & 1/W3 - db')
text(.01,0,'1/Wl(s)')
text(.5,100,'1/W3(s)')
%meta h3x29spc
%pause
clc
disp( << Problem Formulation >')
disp( ')
disp(' Form an augmented plant P(s) with these two weighting functions:')
disp(' ')
disp(' 1). Gam*Wl penalizing error signal "e"')
disp(' ')
disp(' 2). W2 penalizing control input "u"')
disp(' ')
disp(' 2). W3 penalizing plant output "y"')
disp(' ')
disp(' and find a stabilizing controller F(s) such that the Hinf norm')
disp(' of TF Tylul is less than or equal to one, i.e.')
disp(' ')
disp(' ITylul < or = 1,')
disp(' F(s) inf')
disp(' ")
disp(' ')
disp(' (strike a key to continue ...)')
%pause
clc
disp(' ')
disp(' ')
disp(' << DESIGN PROCEDURE >')
disp( ')
disp( * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
disp( * [Step 1]. Do plant augmentation (run H3AUGX29.M ) *'
disp(' *
disp( * [Step 2). Balance the augmen*ed plant for better
disp( * numerical condition if necessary
disp(' *
disp( * [Step 3). Do Hinf synthesis with "Gam" = 1
disp( *'
disp( * [Step 4]. Redo the plant augmentation for a
disp( * higher "Gam" and rerun HINF.M
disp(' * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
disp( ')
disp( ')
disp(' (strike a key to continue ...)')
%pause
clc
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disp(' I)
disp(' ')
disp( ')
disp(' Assign the cost coefficients "Gam" with Gam=l ')
disp('
disp(' serving as the baseline design .... ')
disp( ')
disp( ...........--
disp(' augment % Plant augmentation of the X-29 dynamics')
d isp ( ........... )
disp( ')
disp( I)

h3augx29
disp(' ')
disp(' ')
disp(' (strike a key to continue ... )')
%pause
clc
disp(' ')
disp(' ')
%disp(' Do state space balancing on the augmented plant if needed')
%disp(' ')
%disp(' ')
%(abal,bbal,cbal,g,t]=obalreal(A,[Bl B2],[CI;C2])
%A=abal, Bl=bbal(:,l:2), B2=bbal(:,3:4), Cl=cbal(l:4,:), C2=cbal(5:6,:)
disp(' ')
disp(' ')
disp(' The transmission zeros, poles and condition number of the augmented')
disp(' plant follow. In addition, determine if (A,Bl) & (A,B2) are ')
disp(' stabilizable and if (Cl,A) & (C2,A) are detectable.')
disp( ')
disp( ')
tzeroaug=tzero(A,(Bl B2],(Cl;C2],(DlI D12;D21 D221), poleaugA=eig(A)
condaugA=cond(A), rcondaugA=rcond(A)
eps=eps
toldef=10*max(size(A))*norm(A,1)*eps
tol=100*eps*norm([A B1))
(Alc,Blc,Clc,t,k)=ctrbf(A,Bi,Cl,tol)
tol=lOO*eps*norm((A B2j)
[A2c,B2c,C2c,t,k]=ctrbf(A,B2,C2,tol)
tol=lO0*eps*norm([A;Cl])
[Alo,Blo,Clo,t,k]=obsvf(A,Bl,Cl,tol)
tol=lO0*eps*norm((A;C2))
[A2o,B2o,C2o,t,k)=obsvf(A,B2,C2,tol)
clear condag rcondag poleg tzerog svw3i svwli
clear condaugA rcondaugA
clear functions
%pause
disp(' ')
disp(' ')
disp( ........ )
disp(' hinf % Running script file HINF.M for Hinf optimization')
d isp (' ---- -- --- --- ----- ----- -- --- --- --- --- ----- ---- -- ---- -- --- --- ---
aretype='Schur'
hinf
disp(' ')
disp(' ')
disp(' (strike a key to continue ...)')
clear functions
%pause
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dispC' I)
disp(' I)
disp(' State space representation of the full order controller')
disp(' (acp, bcp, ccp, dcp) with its poles and condition number')
disp(' ')
acp,bcp,ccp,dcp
polec~eig (acp)
condacp=cond (acp)
disp(' 1)
disp(' Minimal realization of the controller')
disp(' ')
toldef=lo*max(size~acp) )*normn(acp,1) *eps
tol=lQO*eps*norm( [acp bcp;ccp dcp)
(acpm,bcpxn,ccpm,dcpm)=minreal(acp,bcp,ccp,dcp)
disp(' ')
disp(' Balanced realization & model reduction of the minimal controller')
disp(' ')
tacpbl,bcpbl,ccpbl,g,t)=obalreal(acpm,bcpm,ccpm)
elim=f[lO)
(acpr,bcpr,ccpr,dcpr]=modred(acpbl,bcpbl,ccpbl,dcpm,elim)
disp(' ')
disp(' Poles, controllability, observability, and condition of the '
disp(' balanced, reduced order controller')
disp(' ')
poleacpr=eig (acpr)
tol=lOO*eps*norm( [acpr bcpr)
tacpc,bcpc,ccpc,t,k]=ctrbf(acpr,bcpr,ccpr,tol)
tol=lOO*eps*norn( [acpr;ccpr])
(acpo,bcpo,ccpo,t,k)=obsvf~acpr,bcpr,ccpr,tol)
condacpr=cond (acpr), rcondacpr=rcond (acpr)
acp=acpr; bcp=bcpr; ccp=ccpr; dcp=dcpr;
disp(' ')
disp(' CLTF Tylul (adl, bcl, ccl, dcl) and its poles (reduced order)')
[acl,bcl,ccl,dcl)=lftf(sysp,dimp,acp,bcp,ccp,dcp)
polet-eig (adl)
%pause
disp(' '
disp(' '
h3plot % Preparing singular values for plotting
end
disp(' '
disp(' '
disp C' (strike a key to continue ... )I)
%pause
disp(' ')
disp(' ')
disp(' Open loop state space representation of controller/plant series')
disp(' ')
[algf,blgf,clgf,dlgf)=series(acp,bcp,ccp,dcp,ag,bg,cg,dg)
polol=eig (algf)
disp(' '
disp(' '
disp(' (strike a key to continue ... )')
%pause
disp(' '
disp(' '
disp(' Closed loop state space representation of controller/plant series,')
disp(' controllability, observability, and condition number of the closed')
disp(' loop acgf matrix. '
disp(' '
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disp(' '

Cacgf,bcgf,ccgf,dcgf]=feedbk(algf~blgf,clgf,dlgf,2)
tol=1OO*eps*norm( (acgf bcgf))
(acgfc,bcgfc,ccgfc,t,k]-ctrbf(acgf,bcgf,ccgf,tol)
tol=1OO*eps*norm( (acgf;ccgf])
(acgfo,bcgfo~ccgfot,k]=obsvf(acgf,bcgf,ccgf,tol)
condacgf=cond Cacgf)
disp(' ')
disp(' ')
disp(' (strike a key to continue .. '

%pause
disp(' ')
disp(' Poles of the closed loop system')
disp(' ')
polcleig (acgf)
h3aly
%h3rsp
end
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% Plant Augmentation for the X-29 Hinf problem as W3 is not a
% proper transfer function. Includes contingency for adding W2 to
% ensure d12 is full column rank. This script file is designed for
% the X-29 system without theta as a state, ie, 3 inputs &3 outputs.
%disp(' '
%disp(' '
%disp(' << Plant Augmentation '

%Gam=gama (1,i)
Gain = input(' Input the cost coefficient "Gamn"=
cgb = 1/k*(cg(l,:)*ag*ag;

cg (2,:) *ag*ag*ag*tau+cg (2,:) *ag*ag;
cg(3, :)*ag*ag*ag*tau+cg(3, :)*ag*ag];

dgb = l/k*(cg(l,:)*ag*bg;
cg(2, :) *ag*ag*bg*tau;
cg(3, :)*ag*ag*bg*tau);

nwj. = Gan*(dnwli;O 0;0 0;0 O;dnwli;O 0;0 0;0 O;dnwli);
dwl = nuwli;
sysw2=[aw2 bw2;cw2 dw2]; xw2=3;
%1A,B1,B2,Cl,C2,Dll,D12,D21,D22]=hauginod(ag,bg,cg,cgb,dg,dgb,nwl,dwl,mnn)
(A,Bl,B2,Cl,C2,Dll,Dl2,D2l,D22]=haugx29p(ag,bg,cg,cgb,dg,dgb,nw,dw,sysw2,xw2,

%disp(' ')
%disp(' - - - State-Space (A,Bl,B2,Cl,C2,Dll..D12,D21,D22) is ready for')
%disp(' the Small-Gain problem - --

---- End of AUGX29.M -------% Z
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disp(' Closed loop state space representation of controller/plant series,')
disp(' controllability, observability, and condition number of the closed')
disp(' loop acgf matrix. '
disp(' ')
disp(' ')
[acgf,bcgf,ccgf,dcgf]-feedbk(algf,blgf,clgf,dlgf,2)
tol=lOO*eps*norm( (acgf bcgf])
[acgfc,bcgfc,ccgfc,t,k)-ctrbf(acgf~bcgf,ccgf,tol)
tol=lOO*eps*norm( [acgf;ccgf)
(acgfo,bcgfo,ccgfo,t,k)=obsvf(acgf,bcgf,ccgf,tol)
condacgf=cond (acgf)
disp(' '
disp(' '

dis'n( (strike a key to continue .. '

%pa ise
%diary hx29.dat
disp(' 0)
diso(' Poles of the closed loop system')
disp(' ')
polcl=eig(acgf)
%h:,29aly
%h. Z9trsp
e nc
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format short e
w=logspace(-3,3,lOO);
(magl,phasel]=bode(algf,blgf,clgf,dlgf..l,w); magl=20*loglO(magl);
(mag2,phase2)=bode(algf,blgf,clgf,dlgf,2,w); mag2=20*loglO(mag2);
[mag3,phase3]=bode(algf,blgf,clgf,dlgf,3,w); mag3=20*loglO(mag3);

semilogx(w,magl(:,4) ,w,mag2(:.1) ,W,mag3(:,4))title('X-29 OPEN LOOP (GF) BODE PLOT OF "1 alpha
xlabel('FREQUENCY - rad/sec')
ylabel('GAIN - dB')
grid
%meta h3bdl
%pause
semilogx(w,magl(:,2),w,mag2(:,2),w,mag3(:,2))
title('X-29 OPEN LOOP (GF) BODE PLOT OF 11 q
xlabel('FREQUENCY - rad/sec')
ylabel('GAIN - dB')
grid
%meta h3bd2
%pause
(magl,phasel)=bode(acgf,bcgf,ccgf,dcgf,l,w); magl=20*loglO(magl);
(mag2,phase2j=bode(acgf,bcgf,ccgf,dcgf,2,w); mag2=20*ioglO(mag2);
(mag3,phase3)=bode(acgf,bcgf,ccgf,dcgf,3,w); mag3=20*loglO(mag3);
semilogxcw,magl(:,l),w,mag2(:,l),w,mag3(:,l))
title('X-29 CLOSED LOOP BODE PLOT OF "1 alpha
xlabel('FREQUENCY - rad/sec')
ylabel('GAIN - dBI)
grid
text(15,-20, -- TO ri')
text(.22,-20, -- TO r2')
text(.l,-60, -- TO r3')
meta h~bd3
pause
semilogx(w,magl(:,2),w,mag2(:,2),w,mag3(:,2))
title('X-29 CLOSED LOOP BODE PLOT OF "q
xlabel('FREQUENCY - rad/sec')
ylabel('GAIN - dB')
grid
text(.l,-O,'--TO rZ')
text(.l,-30, -- TO rl)
text(.l,-58, -- TO r3')
meta h3bd4
%pause
disp(' ')
end
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APPENDIX B

State Space Realization of the Open Loop Plant G

ag=[-.4181d 00 .9960d-00 -.2269d-01 -.1213d,00 -. 1948d-01 -. 9493d-03 ...
.4427d-04 -.6712d-04 .1451d-05 -.2162d-C4 -.3540d-05 0.0 0.0 0.0;

.5474d 01 -.3424d-00 .2585d+01 -.1396d.01 -.1058d.01 .3898d-02 ...
-. 1164d-01 -.6397d-02 -.2509d-03 -.536:d-03 -.2912d-03 0.0 0.0 0.0;

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.u 1.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0e+04 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0e+04 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.Oe 04;
0.0 0.0 -.1479d+04 0.0 0.0 -. 1143d-03 0.0 0.0 -.2529d+01 0.0 ...

0.0 -.2697d+03 0.0 0.0;
0.0 0.0 0.0 -. 1491d-04 0.0 0.0 -.1149d-03 0.0 0.0 -.2536d 01 ...

0.0 0.0 -.2701d+03 0.0;
0.0 0.0 0.0 0.0 -.5302d+05 0.0 0.0 -. 1816d-04 0.0 0.0 ...

-.1790d-02 0.0 0.0 -. 6053d*03]

bg=[o.o 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
.1479d 04 0.0;
0.0 .1491d+04;
.5308d+05 0.0)

cg=[1.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0)

dg-zeros(2)
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APPENDIX C

State Space Realization of Reduced-Order Controller for 2 I/O System

acpr =

Columns 1 through 6

-1 0399e-02 -1.2262e-05 -1.0460e-01 4.8094e-02 -7.6875e-02 1.3274e-02
-1 1271e-04 -1.0156e-02 -4.6795e-03 8.3252e-02 -3.1861e-02 -2.8000e-02
-1.0340e-01 -2.9977e-02 -1.9525e+01 2.6394e+0l -3.1280e+01 4.9271e+00
-5.7615e-02 6.0104e-02 -2.7029e+01 -2.5674e+01 4.0396e+01 -7.7033e-02
7.8601e-02 1.3419e-02 3.1746e+01 3.6483e+01 -1.2030e+02 5.3509e+01
-3.4048e-03 -3.6138e-02 -2.7492e+00 5.9997e+00 -2.9572e+01 -9.8984e+00

-4.9864e-03 -3.9735e-02 -3.1302e+00 3.5764e+00 5.9253e+01 -2.4777e+01
3.6535e-03 -2.9112e-02 2.9037e-01 1.0513e*01 -2.4717e+01 -2.1685e+01
4.7908e-02 -1.1300e-02 1.7010e+O1 3.2813e+01 -1.4766e+02 1.0290e+01
9.2037e-03 -1.4652e-03 3.2877e+00 6.3758e+00 -2.8661e+01 8.9049e-01

-8.7200e-04 6.8844e-03 -9.9621e-02 -2.1329e+00 1.6446e+00 3.5846e+00
8.3046e-04 -3.7921e-03 1.8196e-01 1.4002e+00 -1.9663e+00 -1.8969e+00
8.2445e-04 1.0942e-04 3.0302e-01 5.1368e-01 -2.5218e+00 1.7864e-01

-1.7763e-04 9.0089e-04 -3.6094e-02 -3.1981e-01 4.0668e-01 4.5402e-01
2.3188e-05 3.6527e-05 9.5788e-03 6.8832e-03 -7.5896e-02 2.2842e-02

Columns 7 through 12

2.5870e-03 9.1286e-03 8.3886e-03 8.6940e-03 5.3095e-04 1.7503e-03
-4.0336e-02 2.5238e-02 -8.4033e-02 -5.5085e-03 -7.0034e-03 -2.6531e-03
9.2118e-01 3.4965e+00 2.3161e+00 3.1564e+00 1.5463e-01 6.2854e-01
1.0142e+01 -1.3763e+01 1.9246e+01 -3.0766e+00 1.8510e+00 -1.3642e-01

-5.1779e+01 4.6467e+01 1.9853e+01 2.4744e+01 -1.1656e+00 4.1721e+00
3.2298e+00 1.4770e+01 -4.2332e+01 -7.6418e+00 -3.2832e+00 -2.1705e+00

-1.3998e+01 3.5254e+01 -6.3778e+01 -5.0628e+00 -4.9278e+00 -2.0558e+00
-3.7012e+01 -1.4396e+01 9.7679e+01 -3.0219e+00 5.0051e+00 5.6593e-01
2.0492e+01 -7.6498e+01 -2.4305e+02 -2.9439e+01 -4.1233e+01 -1.7944e+01
1.5648e+00 -4.6369e+00 -8.7073e+01 -4.5600e+01 -2.4619e+01 -2.1083e+01
4.4792e+00 6.6710e+00 1.6807e+01 2.0142e+01 -2.7237e+01 -2.5895e+Ol

-2.3356e+00 -3.8924e+00 -1.1275e+01 -9.7936e+00 3.2961e+01 -1.2550e+02
2.7969e-01 -2.1520e-01 -8.1078e+00 -8.0534e+00 1.9334e+00 -2.7568e+0l
5.6035e-01 9.1670e-01 2.5024e+00 2.2396e+00 -7.3070e+00 5.7380e+01
3.0310e-02 2.5482e-02 -2.0105e-01 -2.0731e-01 -2.0302e-01 1.1700e+00

Columns 13 through 15

-4.8787e-04 -4.7600e-04 -1.1648e-05
-1.1798e-03 -4.6223e-04 -5.0636e-05
-1.8641e-01 -1.7785e-01 -4.5815e-03
6.2164e-01 3.9705e-01 2.1676e-02

-1.9086e+00 -1.5949e+00 -5.4329e-02
-1.9215e-01 9.8820e-02 -1.3922e-02
-7.3742e-01 -2.4886e-01 -3.2950e-02
1.4035e+00 8.0952e-01 5.1750e-02

-5.7313e+00 -1.7434e+00 -2.6308e-01
2.3404e+00 3.5305e+00 1.1476e-02

-8.1543e+00 -2.5954e+00 -3.6511e-01
2.4647e+00 1.5106e+01 -1.0758e+00

-4.5631e+01 -6.3440e+01 -3.3130e+00
3.3396e+01 -7.1315e+01 -6.2957e+00

-2.7014e+00 -3.0793e+00 -1.4418e+02
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bcpr =

5.2502e+00 6.4618e-01
-3.2830e-01 2.9101e+00
2.5970e+01 7.3091e+00
1.5589e+01 -7.1255e 00

-1.9609e+01 -4.1407e+00
2.1893e-01 5.2816e+00
5.5783e-01 5.8452e+00
-1.4366e+00 4.0563e+00
-1.2310e+01 2.5979e-01
-2.3522e+00 -5.2653e-02
3.4165e-01 -9.6027e-01

-2.7670e-01 5.1899e-01
-2.0646e-01 -3.9167e-02
6.0765e-02 -1.2386e-01

-5.2177e-03 -5.8883e-03

ccpr -

Columns I through 6

-3.8779e+oo 1.9829e+00 -1.9257e+01 7.1236e-01 -1.1251e+01 5.2413e+00
-3.5979e00 -2.1551e+00 -1.8895e+01 1.7126e+01 -1.6585e+01 -6.8677e-01

Columns 7 through 12

4.4501e+00 -7.6160e-01 9.8134e+00 2.1675e+00 7.8612e-01 5.8776e-01
-3.8307e+00 4.2352e+00 -7.4360e+00 9.1514e-01 -6.4874e-01 2.1019e-02

Columns 13 through 15

2.4380e-02 -4.3767e-02 2.7852e-03
-2.0872e-01 -1.3083e-01 -7.3580e-03

dcpr -

-3.9822e-01 -9.2951e-02
-6.3988e-02 -1.4936e-02
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APPENDIX D

Closed Loop State Space Realization of Controller/Plant Series

Columns I through 6

-1.0399e-02 -1.2262e-05 -1.0460e-01 4.8094e-02 -7.6875e-02 1.3274e-02

-1.1271e-04 -1.0156e-02 -4.6795e-03 8.3252e-02 -3.1861e-02 -2.8000e-02

-1.0340e-01 -2.9977e-02 -1.9525e+01 2.6394e+01 -3.1280e+01 4.9271e+00

-5.7615e-02 6.0104e-02 -2.7029e+01 -2.5674e+01 4.0396e+01 -7.7033e-02

7.8601e-02 1.3419e-02 3.1746e+01 3.6483e+0l -1.2030e+02 5.3509e+01

-3.4048e-03 -3.6136e-02 -2.7492e+00 5.9997e+00 -2.9572e+01 -9.8984e+00

-4.9864e-03 -3.9735e-02 -3.1302e+00 3.5764e+00 5.9253e+01 -2.4777e+01

3.6535e-03 -2.9112e-02 2.9037e-01 1.0513e+01 -2.4717e+01 -2.1685e+01

4.7908e-02 -1.1300e-02 1.7010e+01 3.2813e+01 -1.4766e+02 1.0290e+01

9.2037e-03 -1.4652e-03 3.2877e+00 6.3758e+00 -2.8661e+01 8.9049e-01

-8.7200e-04 6.8844e-03 -9.9621e-02 -2.1329e+00 1.6446e+00 3.5846e+00

8.3046e-04 -3.7921e-03 1.8196e-01 1.4002e+00 -1.9663e+00 -1.8969e+00

8.2445e-04 1.0942e-04 3.0302e-01 5.1368e-01 -2.5218e+00 1.7864e-01

-1.7763e-04 9.0089e-04 -3.6094e-02 -3. 1981e-01 4. 0668e-01 4.5402e-01

2.3188e-05 3.6527e-05 9.5788e-03 6.8832e-03 -7.5896e-02 2.2842e-02

-1.2486e+00 -2.9277e-01 -6.4400e+00 4.0675e+00 -5.0553e+00 3.9391e-01

6.2283e-01 -3.5136e+00 2.2704e+00 1.3055e+01 -3.1083e+00 -5.2805e+00

-2.8230e+00 4.3606e+00 -1.3268e+01 -1.1504e+01 -3.7032e+00 7.8679e+00

4.5916e-01 -1.8217e+00 1.8716e+00 6.4561e+00 -1.1091e+00 -2.8251e+00

-2.6795e+00 7.0049e-01 -1.3478e+01 3.2523e+00 -8.8046e+00 2.6913e*00

3.3498e+00 -6.0600e-01 1.6920e+01 -5.1776e+00 1.1422e+01 -2.9899e+00

-1.1953e+00 1.4172e+00 -5.7285e+00 -3.1023e+00 -2.2283e+00 2.7353e+00

-1.9331e-01 9.0043e-01 -7.5360e-01 -3.2683e+00 6.7229e-01 1.3748e+00

1.1620e+00 -1.4093e-01 5.8870e+00 -2.0816e+00 4.0687e+00 -9.4087e-01

-9.4959e-01 5.5372e-01 -4.6981e+00 -1.0641e-01 -2.6504e+00 1.3781e+00

-4.6009e-01 1.0922e-02 -2.3425e+00 1.0092e+00 -1.6801e+00 3.1020e-01

1.4474e-01 7.9646e-02 7.5834e-01 -6.5991e-01 6.5636e-01 1.7830e-02

1.3788e-02 -9.7163e-02 4.5274e-02 3.6887e-01 -9.8623e-02 -1.4382e-01

1.3630e-02 -6.9743e-03 6.7686e-02 -2.4859e-03 3.9541e-02 -1.8429e-02

Columns 7 through 12

2.5870e-03 9.1286e-03 8.3886e-03 8.6940e-03 5.3095e-04 1.7503e-03

-4.0336e-02 2.5238e-02 -8.4033e-02 -5.5085e-03 -7.0034e-03 -2.6531e-03

9.2118e-01 3.4965e+00 2.3161e+00 3.1564e+00 1.5463e-01 6.2854e-01

1.0142e+01 -1.3763e+01 1.9246e+01 -3.0766e+00 1.8510e+00 -1.3642e-01

-5.1779e+01 4.6467e+01 1.9853e+01 2.4744e+01 -1.1656e+00 4.1721e+00

3.2298e+00 1.4770e+01 -4.2332e+01 -7.6418e+00 -3.2832e+00 -2.1705e+00

-1.3998e+01 3.5254e+01 -6.3778e+01 -5.0628e+00 -4.9278e+00 -2.0558e+00

-3.7012e+01 -1.4396e+01 9.7679e+01 -3.0219e+00 5.0051e+00 5.6593e-01

2.0492e+01 -7.6498e+01 -2.4305e+02 -2.9439e+01 -4.1233e+01 -1.7944e+01

1.5648e+00 -4.6369e+00 -8.7073e+01 -4.5600e+01 -2.4619e+01 -2.1083e+01

4.4792e+00 6.6710e+00 1.6807e+01 2.0142e+01 -2.7237e+01 -2.5895e+01

-2.3356e+00 -3.8924e+00 -1.1275e+01 -9.7936e+00 3.2961e+01 -1.2550e+02

2.7969e-01 -2.1520e-01 -8.1078e+00 -8.0534e+00 1.9334e+00 -2.7568e+01

5.6035e-01 9.1670e-01 2.5024e+00 2.2396e+00 -7.3070e+00 5.7380e+01

3.0310e-02 2.5482e-02 -2.0105e-01 -2.0731e-01 -2.0302e-01 1.1700e+00

-4.2260e-01 9.0677e-01 -6.9611e-01 4.4243e-01 -6.8136e-02 6.7025e-02

-7.0809e+00 4.0749e+00 -1.4806e+01 -1.2247e+00 -1.2285p+00 -5.1375e-01

9.0516e+00 -4.1630e+00 1.9222e+01 2.3782e+00 1.5786e+00 8.1073e-01

-3.6887e+00 2.0533e+00 -7.7326e+00 -6.9198e-01 -6.4051e-01 -2.7787e-01

1.7406e+00 3.0217e-01 4.0080e+00 1.3140e+00 3.1217e-01 3.1824e-01

-1.6387e+00 -7.1145e-01 -3.8938e+00 -1.5687e+00 -2.9721e-01 -3.6245e-01

2.9776e+00 -1.2318e+00 6.3622e+00 8.8925e-01 5.2036e-01 2.8696e-01

1.8190e+00 -1.0296e+00 3.8082e+00 3.2795e-01 3.1571e-01 1.3450e-01

-4.3037e-01 -3.3250e-01 -1.0638e+00 -5.2515e-01 -7.9197e-02 -1.1663e-01

1.2255e+00 -2.7079e-01 2.6852e+00 5.4947e-01 2.1601e-01 1.5287e-01

8.0992e-02 1.8717e-01 2.3541e-01 1.9563e-01 1.5877e-02 4.0291e-02

1.4006e-01 -1.6166e-01 2.6995e-01 -3.8751e-02 2.3666e-02 -1.7713e-03

-1.9537e-01 1.1418e-01 -4.0801e-01 -3.2428e-02 -3.3881e-02 -1.3917e-02

-1.5651e-02 2.6824e-03 -3.4512e-02 -7.6200e-03 -2.7647e-03 -2.0665e-03
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Columns 13 through 18

-4.8787e-04 -4.7600e-04 -1.1648e-05 3.4265e+00 2.6093e-01 7.0033e-01

-1.1798e-03 -4.6223e-04 -5.0636e-05 3.2032e-02 3.9424e+00 4.6163e+00

-1.8641e-01 -1.7785e-01 -4.5815e-03 1.7292e+01 6.8088e+00 9.9599e+00

6.2164e-01 3.9705e-01 2.1676e-02 9.4193e+00 -1.1360e+01 -1.2205e+01

-1.9086e+00 -1.5949e+00 -5.4329e-02 -1.2942e+01 -3.2921e+00 -5.3438e+00

-1.9215e-01 9.8820e-02 -1.3922e-02 5.8151e-01 7.0611e+00 8.3284e+00

-7.3742e-01 -2.4886e-01 -3.2950e-02 8.4625e-01 7.7782e+00 9.1980e+00

1.4035e+00 8.0952e-01 5.1750e-02 -5.8424e-01 5.6082e+00 6.4942e+00

-5.7313e+00 -1.7434e+00 -2.6308e-01 -7.8856e+00 1.7695e+00 1.1612e+00

2.3404e+00 3.5305e+00 1.1476e-02 -1.5154e+00 2.0088e-01 6.0322e-02

-8.1543e+00 -2.5954e+00 -3.6511e-01 1.3931e-01 -1.3278e+00 -1.5375e+00

2.4647e+00 1.5106e+01 -1.0758e+00 -1.3442e-01 7.2827e-01 8.3657e-01

-4.5631e+01 -6.3440e+01 -3.3130e+00 -1.3589e-01 -2.8718e-02 -4.9266e-02

3.3396e+01 -7.1315e+01 -6.2957e+00 2.8694e-02 -1.7319e-01 -1.9933e-01

-2.7014e+00 -3.0793e+00 -1.4418e+02 -3.8432e-03 -7.2981e-03 -8.9818e-03

-4.6078e-02 -3.5124e-02 -1.4208e-03 1.2250e-01 2.2308e+00 8.2904e-02

-1.8895e-01 -6.5135e-02 -8.3992e-03 2.5142e+00 -6.6192e-01 -1,7140e+00

1.8667e-01 3.4021e-02 9.2872e-03 1.0453e-01 1.5308e+00 -1.4431e+01

-9.4784e-02 -3.0659e-02 -4.2791e-03 1.4115e-01 -5.6614e-01 1.2023e 01

-2.1934e-02 -4.5366e-02 2.5787e-04 -2.7934e-01 2.0713e-01 -7.7357e+00

4.3042e-02 6.28C8e-02 3.4892e-04 2.7402e-01 -2.0757e-01 7.7828e+00

5.4190e-02 4.7124e-03 2.8644e-03 -1.2447e-01 4.5133e-01 -9.8684e+00

4.7635e-02 1.5922e-02 2.1338e-03 -5.0931e-02 2.7919e-01 -5.4553e+00

1.8943e-02 2.3352e-02 2.9346e-04 8.3725e-02 -5.0725e-02 2.1914e+00

9.9162e-03 -9.1785e-03 8.5161e-04 -8.4322e-02 1.8042e-01 -4.3499e+00

-1.0099e-02 -1.0260e-02 -2.2788e-04 -3.6226e-02 5.8282e-03 -6.0937e-01

7.9885e-03 5.1041e-03 2.7846e-04 4.8150e-03 2.2795e-32 -2.9610e-01

-5.3051e-03 -1.8796e-03 -2.3417e-04 4.2518e-03 -3.0401e-U2 5.8408e-01

-8.5947e-05 1.5374e-04 -9.8005e-06 2.9774e-04 -2.2133e-03 5.6798e-02

Columns 19 through 24

-3.6426e-01 -2.1595e+00 2.4683e-01 -2.2989e-ul -2.162e-01 1.8631e-03

1.8269e+00 -1.1359e+00 1.9499e+00 -1.5626e+00 8.9748e-01 -6.5908e-01

7.1306e-01 -1.2453e+01 3.9605e+00 -3.3354e+00 1.3545e-01 -9.0933e-01

-6.6120e+00 -2.5162e+00 -5.2915e+00 4.1514e+00 -3.3666e+00 2.0255e+00

3.0422e-01 8.8093e+00 -2.0725e+00 1.7819e+00 3.1041e-01 3.7883e-01

3.1979e+00 -2.3535e+00 3.5104e+00 -2.818e+00 1.5644e+00 -1.1735e+00

3.4936e+00 -2.7178e+00 3.8740e+00 -3.1119e+00 1.7064e+00 -1.2899e+00

2.6881e+00 -1.2326e+00 2.7522e+00 -2.1996e+00 1.3284e+00 -9.4593e-01

1.9393e+00 4.2986e+00 6.0352e-01 -4.0962e-01 1.0512e+00 -4.0076e-01

3.0803e-01 8.6546e-01 4.7184e-02 -2.3598e-02 1.7023e-01 -5.3733e-02

-6.3660e-01 2.9124e-01 -6.5159e-01 5.2077e-01 -3.1460e-01 2.2398e-01

3.5737e-01 -1.2442e-01 3.5538e-01 -2.8348e-01 1.7731e-01 -1.2361e-01

5.9127e-03 9.0844e-02 -1.8869e-02 1.6393e-02 4.5954e-03 2.9990e-03

-8.4524e-02 3.1581e-02 -8.4626e-02 6.7536e-02 -4.1897e-02 2.9354e-02

-2.8459e-03 4.4059e-03 -3.7398e-03 3.0324e-03 -1.3509e-03 1.1698e-03

-3.1731e-02 -1.7755e-01 1.8591:-02 -1.7428e-02 -1.9176e-02 8.0964e-04

-6.6508e-01 2.8540e-01 -6.7816e-01 5.4144e-01 -3.3059e-01 2.3398e-01

-1.1960e+01 8.1671e+00 -1.2278e+01 9.8902e+00 -5.4148e+00 4.0581e+00

-3.2752e+01 2.5403e+01 -6.5244e+01 4.3819e+01 -3.6200.e*01 2.3589e+01

1.2476e+01 -3.3664e+01 3.1172e+01 -3.4986e+01 2.4951e+01 -1.9603e+01

-9.8155e+00 6.6774e+01 -1.1499e+02 2.3948e+02 -1.3531e+02 8.5371e+01

4.1919e+01 -3.7902e+01 -6.7843e+01 -9.1153e+01 1.7521e+02 -8.2929e+01

3.6204e+01 -2.3385e+01 9.0979e+01 -1.7323e+02 -7.3440e+01 1.0393e+02

-8.9347e+00 2.7218e+01 -8.5195e+01 5.6306e+01 6.6647e+00 -1.4028e+02

2.2762e+01 -3.0465e+01 8.6383e+01 -9.3371e+01 -8.1601e+01 1.3847e+02

1.7222e+00 -9.7024e+00 2.9393e+01 -1.4357e+01 -4.7599e+00 9.1385e+01

2.3936e+00 1.6034e+00 -6.0956e+00 -4.3450e+00 -1.1412e+01 -2.3750e+01

-3.4643e+00 1.9987e+00 -4.4409e+00 1.0620e+01 1.5786e+01 -1.2415e+01

-2.8422e-01 4.0575e-01 -1.1027e+00 1.1095e+00 1.2718e+00 -3.7835e+00
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Columns 25 through 29

7.6382e-01 -1.6414e-01 -1.7640e-01 1.7079e-01 7.1694e-03
6.4187e-01 2.3732e-01 -5.7108e-02 2.4721e-02 -9.4652e-03
4.7395e+00 -4.9543e-01 -9.6751e-01 8.9417e-01 2.2894e-02
1.5408e-01 -1.1834e+00 -3.1491e-01 3.9862e-01 4.8928e-02

-3.2565e+00 4.8012e-01 6.9870e-01 -6.5861e-01 -2.1497e-02
1.2600e+00 3.9753e-01 -1.2870e-01 7.0169e-02 -1.5760e-02
1.4313e+00 4.2710e-01 -1.5 14e-01 8.7456e-02 -1.6892e-02
7.8041e-Ol 3.7067e-01 -4.9491e-02 4.0556e-03 -1.4898e-02

-1.3760e+00 5.2144e-01 3.7259e-01 -3.7915e-01 -2.2233e-02
-2.8685e-01 9.1768e-02 7.3560e-02 -7.3678e-02 -3.9359e-03
-1.e457e-0l -8.7815e-02 1.1669e-02 -9.1201e-04 3.5297e-03
8.9010e-02 5.1210e-02 -3.4755e-03 -2.3655e-03 -2.0680e-03
-3.3252e-02 5.3962e-03 7.2542e-03 -6.8813e-03 -2.3989e-04
-2.1857e-02 -1.2007e-02 9.9145e-04 4.0093e-04 4.8434e-04
-1.9853e-03 -2.4059e-04 2.9646e-04 -2.3268e-04 8.9075e-06
6.2396e-02 -1.378le-02 -1.4500e-02 1.4070e-02 6.01000-04
-1.8649e-01 -9.3084e-02 1.0728e-02 4.6116e-04 3.7462e-03
-4.2170e+00 -1.4053e+00 4.1395e-01 -2.1229e-01 5.5841e-02
-2.1484e+01 -8.7977e+00 1.5914e4-00 -4.6398e-01 3.5200e-01
3.1664e+01 4.0658e+00 -4.5088e+00 3.4961e+00 -1.4919e-01

-8.5469e+0l -2.7750e+01 7.4458e+00 -3.5528e+00 1.0843e+00
8.7428e+Ol 2.7088e+Ol -7.3769e+00 3.6175e+00 -1.0655e+00
-7.3125e+01 -3.9971e+01 7.1874e+00 -1.8422e+00 1.6118e+00
1.4883e+02 8.4695e+01 -2.1423e+O1 1.0333e+01 -4.0479e+00
-2.1400e+02 -6.4387e+01 5.7274e+01 -4.1414e+01 3.2024e+00
-8.9390e+0l -1.1436e+02 -3.1523e+01 9.1100e+00 9.2255e+00
-8.0190e+00 8.5858e+01 -4.0464e+01 6.0359e+01 -9.2992e-01
4.3488e+01 9.8215e+00 3.1925es-01 -1.3722e+02 -4.0783e+00
5.7431e+00 7.0460e+00 -2.9337e-01 -2.1276e+01 -1.3857e+02

bcgf =

5.2502e+00 6.4618e-01
-3.2830e-01 2.9101e+00
2.5970e+01 7.3091e+00
1.5589e+01 -7.1255e+00

-1.9609e+01 -4.1407e+00
2.1893e-01 5.2816e+00
5.5783e-01 5.8452e+00

-1.4366e+00 4.0563e+00
-1.2310e+01 2.5979e-01
-2.3522e+00 -5.2653e-02
3.4165e-01 -9.6027e-01

-2.7670e-01 5.1899e-01
-2.0646e-01 -3.9167e-02
6.0765e-02 -1.2386e-01
-5.2177e-03 -5.8883e-03
-5.7008e-02 -1.3306e-02
3.0829e-01 7.1960e-02

-5.1296e-01 -1.1973e-01
1.6850e-01 3.933le-02

-2.2395e-01 -5.2274e-02
2.5935e-01 6.0536e-02
-1.8438e-01 -4.3038e-02
-8.1148e-02 -l.8941e-02
8.4666e-02 1.9762e-02
-1.0273e-01 -2.3978e-02
-3.0092e-02 -7.0239e-03
3.1136e-03 7.2677e-04
8.3068e-03 1.9389e-03
1.4001e-03 3.2679e-04
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ccgf =

Columns 1 through 6

0 0 0 0 0 0
0 0 0 0 0 0

Columns 7 through 12

0 0 0 0 0 0
0 0 0 0 0 0

Columns 13 through 18

0 0 0 -6.4236e-01 1.1544e-01 6.0999e-02
0 0 0 -8.3474e-02 -1.3417e+00 -1.5794e+00

Columns 19 through 24

1.4464e-01 3.5829e-01 3.4970e-02 -2.1996e-02 7 .90 72e-02 -2.7843e-02
-6.1148e-01 4.3076e-01 -6.6611e-01 5.3449e-01 -2.9948e-01 2.2334e-01

Columns 25 through 29

-1.1672e-01 4.0736e-02 3.0755e-02 -3.1054e-02 -1.7417e-03
-2.3373e-01 -7.6955e-02 2.3094e-02 -1.1998e-02 3.0561e-03

dcgf =

0 0
0 0
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APPENDIX E

Poles of The 3 1/0 Reduced Order Closed Loop System

-9. 1468e+03
-5.5159e+02 + 5.3384e+02i
-5.5159e+02 - 5.3384e+02i
-2.2777e+02 + 2.3189e+02i
-2.2777e+02 - 2.3189e+02i
-1. 4457e+02
-1. 4319e+02
-1. 1949e+02
-8.9079e+Q1 + 1.8937e+oli
-8.9079e+Q1 - 1.8937e+Oli
-1.7935e+O1 + 6.0318e+Oli
-1.7935e+O1 - 6.0318e+Oli
-5.2531e+O1 + 4.8268e+Oli
-5.2531e+Q1 - 4.8268e+Oli
-4.9021e+Q1 + 4.9207e+Oli
-4.9021e+O1 - 4.9207e+Oli
-3.1654e+O1 + 9.6963e+ooi
-3.1654e+O1 - 9.6963e+O0i
-2. 9006e+Ol
-2. 0127e+O1
-8.7118e+00 + 9.5608e+O0i
-8.7118e+00 - 9.5608e+O0i
-8.0945e+00 + 6.1691e+O0i
-8.0945e+00 - 6.1691e+ooi
-1. 4512e+O1
-1. 8891e+00
-1. 9503e+00
-1. 0702e+O1
-2.7 168e+00
-8. 6993e+00
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